Different Changes in the Expression of Multiple Kinds of Tight-Junction Proteins during Ischemia-Reperfusion Injury of the Rat Ileum

نویسندگان

  • Kaori Inoue
  • Masahito Oyamada
  • Shoji Mitsufuji
  • Takeshi Okanoue
  • Tetsuro Takamatsu
چکیده

Dysfunction of tight junctions (TJs), located at the most apical part of the intestinal epithelium, is believed to result in various complications in intestinal disease. However, the behaviors of multiple kinds of TJ proteins during ischemia-reperfusion injury are not understood in detail. To determine changes in expression and localization of TJ proteins during intestinal-barrier recovery, we induced intestinal ischemia-reperfusion injury in rats, measured mucosa-to-blood permeability of fluorescein isothiocyanate-dextran-4 kDa, and compared it with spatiotemporal changes of ZO-1, occludin, and claudin-1, -2, -3, -4, and -5 by immunoconfocal microscopy. At 1 hour post-reperfusion, villi were denuded and intestinal-barrier function was lost. From 6 to 24 hours post-reperfusion, villous epithelium was restored by cell migration, and barrier function together with reticular pattern expression of ZO-1, occludin, and claudin-1, -3, and -5, recovered time-dependently. To the contrary, after ischemia-reperfusion injury, the localized expression of claudin-2 and claudin-4 observed in the non-treated control was lost and replaced with broader expression from crypts to villi with increased basolateral claudin-4 expression in epithelial cells. These data demonstrated that recovery of intestinal barrier function is associated with expression of ZO-1, occludin, and claudin-1, -3, and -5, whereas claudin-2 and claudin-4 show unique changes in expression and localization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...

متن کامل

The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...

متن کامل

The Effect of Dexamethasone on Expression of Inducible Nitric Oxide Synthase Gene During Liver Warm Ischemia-reperfusion in Rat

Background: Liver ischemia / reperfusion Injury (IRI) is one of the major causes of liver failure during various types of liver surgery, trauma and infections. The present study investigates the effect of dexsamethasone on the liver injury and inducible nitric oxide synthase gene expression during hepatic warm ischemia/reperfusion in rats. Materials and Methods: 24 male Wistar rats (200-250 g)...

متن کامل

Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model

Objective(s): Liver ischemia-reperfusion injuries (I/RI) are typically the main causes of liver dysfunction after various types of liver surgery especially liver transplantation. Radical components are the major causes of such direct injuries. We aimed to determine the beneficial effects of silibinin, a potent radical scavenger on liver I/RI.Materials...

متن کامل

Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats

Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta Histochemica et Cytochemica

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2006